https://github.com/gtraines/perceptron_classification

*Background*

One of the fundamental concepts in artificial intelligence and machine learning is the perceptron learning algorithm which gives life to the abstract data structure known as the perceptron. The perceptron is a data structure created to resemble the functioning of a neuron in the brain. The perceptron has a set of inputs (variable values) which each has an excitatory (positive) or inhibitory (negative) weight associated with it. During the training phase, the perceptron receives a set of values corresponding to its inputs along with an expected target outcome. If the sum of the weights multiplied by their corresponding input values is greater than a threshold value, the perceptron will emit a positive response; if the sum is lower than the threshold value, the perceptron will emit a negative response.

Continue reading Introducing the Perceptron →

## always choosing the local optimum